US009110601B2

a2 United States Patent

Vorsprach et al.

US 9,110,601 B2
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54) BACKUP LIFECYCLE MANAGEMENT

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

Applicants:Bernd Vorsprach, Berlin (DE);
Christoph Bautz, Berlin (DE); Henrik
Hempelmann, Havelberg (DE); Martin
E. Brunzema, Berlin (DE)

Inventors:

Bernd Vorsprach, Berlin (DE);

Christoph Bautz, Berlin (DE); Henrik
Hempelmann, Havelberg (DE); Martin
E. Brunzema, Berlin (DE)

Assignee:

Notice:

SAP SE, Walldorf (DE)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 194 days.

Appl. No.:

Filed:

Int. Cl1.
GO6F 17/00
GO6F 3/06
U.S. CL
CPC

None

13/925,540

Jun. 24,2013

Prior Publication Data

US 2014/0379660 A1

Dec. 25, 2014

(2006.01)
(2006.01)

GOG6F 3/0649 (2013.01); GO6F 3/0608
(2013.01); GOGF 3/0683 (2013.01)
Field of Classification Search

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,515,502 A
5,799,305 A
5,832,508 A
6,324,548 Bl
6,640,217 B1 *
7,127,577 B2
7,363,444 B2

5/1996
8/1998
11/1998
11/2001
10/2003
10/2006
4/2008

Wood

Bortvedt et al.

Sherman et al.

Sorenson

Scanlan et al.ccoceeverins 11
Koning et al.

Ji

100
~

7,395,387 B2 7/2008 Berkowitz et al.

7,644,300 Bl 1/2010 Rao

7,651,593 B2 1/2010 Prahlad et al.

7,668,880 B1* 2/2010 Carrollcooccovvevvenrnnnnn. 707/640

7,711,912 B2 5/2010 Sandrock-Grabsky

7,725,669 Bl 5/2010 Bingham et al.

7,743,205 B2 6/2010 Massey et al.

7,882,086 B1* 2/2011 Wangetal.cccoceuenen. 707/696

7,941,404 B2 5/2011 Garimella et al.

8,364,648 Bl 1/2013 Tang

8,386,733 Bl 2/2013 Tsaur et al.

8,423,731 Bl 4/2013 Nadathur et al.

8,433,684 B2 4/2013 Munoz

8,862,547 B2* 10/2014 Krameretal. 707/640
2004/0153615 Al 8/2004 Koning et al.
2004/0249865 Al 12/2004 Lee et al.
2004/0260973 Al* 12/2004 Michelman 714/13
2005/0081007 Al* 4/2005 Goldetal.ccccee.. 711/162
2006/0004846 Al 1/2006 Murley et al.
2009/0217271 Al* 8/2009 GOtO ..ovvvvvevevvererieriinn 718/100

(Continued)

FOREIGN PATENT DOCUMENTS
WO 2009/146011 Al

OTHER PUBLICATIONS

12/2009

“Communication: The Extended European Search Report”, Euro-
pean Patent Office, dated Oct. 19, 2012, for European Application
No. 12004423.5-2224, 6pgs.

Primary Examiner — Hung Le
(74) Attorney, Agent, or Firm — Buckley, Maschoft &
Talwalkar LLC

(57) ABSTRACT

A system includes determination of a plurality of backup jobs
based on a backup catalog, the backup catalog comprising a
plurality of records, each of the plurality of records associated
with one of the plurality of backup jobs, reception of a first
instruction to delete a first backup job of the plurality of
backup jobs, and, in response to the first instruction, addition
of a first record associated with the first backup job to the
backup catalog, wherein the first record indicates that the first
instruction to delete the first backup job was received.

18 Claims, 11 Drawing Sheets

130 140
{ ADMIN][CLIENT]/

|

]

1201 DATABASE

110
< ENGINE

/160

BACKUP

12

~~| VOLATILE STORAGE

TOOL

/150

14
PERSISTENT
STORAGE

BACKUP
FILES

US 9,110,601 B2

Page 2
(56) References Cited 2012/0209814 Al1* 82012 Zhangetal. 707/654
2012/0221528 Al 8/2012 Renkes et al.
U.S. PATENT DOCUMENTS 2013/0018946 Al* 1/2013 Brownetal. 709/203
2013/0024427 Al 1/2013 Long
2010/0138692 Al™* 6/2010 Liu .oocovvvviiieeieeieie. 714/15 2013/0117221 Al 5/2013 Thomsen et al.
2010/0205152 Al* 8/2010 Ansarietal. 707/654 2013/0117233 Al 5/2013 Schreter

2011/0246423 Al 10/2011 Jess . .
2012/0078855 Al 3/2012 Beatty et al. * cited by examiner

U.S. Patent Aug. 18, 2015 Sheet 1 of 11

100
N

130
ADMIN CLIENT

[

120 paTABASE
110\ ENGINE

/160

112
“~ VOLATILE STORAGE

BACKUP
TOOL

/150

114
PERSISTENT

STORAGE

FIG. 1

BACKUP
FILES

US 9,110,601 B2

U.S. Patent Aug. 18, 2015 Sheet 2 of 11 US 9,110,601 B2

200 N
Backup Id Host ID Service Name Location Size | Delete
A
A
A
B
B
B
C
C it
C I~~~

FIG. 2

U.S. Patent Aug. 18, 2015

Receive Instruction
To Delete Backup

—
{

:]:3310
:)_?320

S330

Lock Backup
Catalog

Delete
Single Or Multiple -
Backups? Multiple

Single

f’S350

Add Delete Record Associated
With Backup To Be Deleted To
Backup Catalog

Sheet 3 of 11

300
v

S340
-

Identify Backup Files
To Not Be Deleted

)

S360

-

[

Create New Backup
Catalog Including Identified
Backup Files

J

A

Backup Files

/—8390

Add Backup File(s) To
Be Deleted To Backup
Delete Queue

FIG.

S380

Release
Lock

US 9,110,601 B2

US 9,110,601 B2

Sheet 4 of 11

Aug. 18, 2015

U.S. Patent

- dnyong Do @Y 09'8€ [00 00 Y00 €106 £100%0'%2 O
dnyoog Do | AW 68766 | SG0 W00 W00 | 9ZH0%GL SI0Z40%C O
dnyoog Do7] gy $0'6¢ | S00 W00 Y00 | 1€%0°GL CI0ZH0HT o
oy orpL ambguoy |Z0_| 00 W00 U0 [/y0%1 €l 03| O
] SO0 W0 YOO | L¥:¥0+Gl £102$0%C O
] ~sdnyoog Jopio @)9q [BE | SO0 WOO Y00 | [0S EIOTHOHT O
|| “dnyopg 030 232j8Q 6¢ | SO0 W0D Y00 | 8v+¥0:GlL £I02%0'%C m]
meTemEe e e | e maxDamel
SO TS ve-o-eloc T o s7es | subs | oouigin| | |__O%!~ | Gog o] y o0B% | 00 W00 W0 | ey, cligh0v o
awnjoA ["OP—4Z—0-C10Z | 89 0T JOAIBSXAPUI 00¥188ZN u”v_wum_ N“._ B £y Iy Moo HS 40 | €69l 02H0HT m]
N [P 0-£10C | BN IS90L | BSOSO | oovigdn| | o N, LR B . o
g3 | odh s oINS S ~ S dnyoog Bo7] @ 00'091 | S00 W00 Y00 | 818G°9l £I0ZH0E O
- dnyoog DoT| N £6'9 | S00 WOO Y00 | Z0°¥79L CI0TH0HC u]
- /01op/dnyopq/99aaH/vs1,/dos/isn/ U000 dnyoog DoT| @Y $5Z¢ | SO0 WOO Y00 | 8O0'E¥9L CI0TH0HC O
— ' dnyoog DoT| @Y $/7 | S00 WOO Y00 | 80'E¥9L CI0THOWT O
dnyoog BoT| "G0'cZ0 | S90 W00 Y00 | ¥0°9L CI0TH0HC u]
v <40> | :uorypuioju] [puoIyppy dnyoog Bo7] gy 81'cy [SO0 W00 Y00 LG9l €1000%C m]
S/an 1911z sndyBnoay) dmyong bo7[gy /C'ch [S00 W00 Y00 | Z1:G°9) €I0TH0RT =]
8 /77 g | dmyoog bo7 [@) 00°9y [SO0 W0 Y00 | 1£:£5°91 CI0TH0HT a]
S}, WO Y00 :uopyoung dmyoog bo7[gy 08'Cy [SO0 W00 Y00 | 1£:£G°91 I0TH0%T =]
(upog/adoin3) 67:G0:G) €102 H0'HT paysIul dnyoog bo7[@Y 00'09) | S00 W00 Y00 | B81'8S°9L CI0TH0HC =]
d 0: e ; dnyoog Do7] N 87"/ | 00 W00 Y00 | BI'8S°9L CIOTH0WT =]
(teg/odors) 85:90754 €108 goﬂ adi| s;wmﬂuw dnyoog Bo1 [@Y 9y | S00 W00 400 | 8BS0l CI0CH0YZ | O
dnspog 010q adk). dnypog dnyoog Bo1 | G /9%y | S00 WD Y00 | 81BG9L CICHONG| OO
I\\ NSs300n P P adf| dnyaog | ez uoijoing . Pounis | smoig
0cy 97085/808995) a oy sdnyoog bo7 oy
sfijaq dnyoog || Boppjog dnyoog |
ﬁoo_zco %V_S& uonpJnbyuoy _ MOIAIAQ
XT| $ 6v61icL =iopdn jso] (soy ajbuis) 99 QI-VSL (WALSAS) VSL dmpoog O
00v J

510—

U.S. Patent Aug. 18, 2015 Sheet 5 of 11 US 9,110,601 B2
FSOO
L& Backup Deletion of System TSA [=][O x|
Specify Backup Deletion Settings
Delete data and log backups from the cotolog only,
or from the catalog and physically from the backup location.
- Catalog]
O Catalog and Backup Location
[File System
[Third-party backup tool (Backint)
520
I
| <Back || Net> || Fnish || Caoncel |

FIG. 5

U.S. Patent Aug. 18, 2015 Sheet 6 of 11 US 9,110,601 B2

FGOO
L& Backup Deletion of System TSA [=][O x|

Review Backup Deletion Settings

Review the deletion settings and choose ‘Finish' to start the deletion. You can
modify the deletion settings by using the Back button.

Data and log backups will be deleted from the backup catalog only.
Number of Backups 159
Total Size 1,19 GB

The following data and log backups will be deleted:

Jusr/sap/TSA/SYS /global /hdb /backint /log_backup_0_0_0_0 -
Jusr/sap/TSA/SYS /qlobal /hdb /backint /log_backup_3_0_1387584_1393344
Jusr/sap/TSA/SYS /qlobal /hdb /backint /log_backup_1_0_472384_473344

Jusr/sap/TSA/SYS /qlobal /hdb /backint /log_backup_1_0_459008_459968

Jusr/sap/TSA/SYS /global /hdb /backint /log_backup_0_0_0_0

Jusr/sap/TSA/SYS /qlobal /hdb /backint /log_backup_1_0_460928_461952
Jusr/sap/TSA/SYS /qlobal /hdb /backint /log_backup_2_0_1537152_1562368
Jusr/sap/TSA/SYS /qlobal /hdb /backint /log_backup_0_0_0_0
Jusr/sap/TSA/SYS /qlobal /hdb /backint /log_backup_2_0_1163392_1182464
Jusr/sap/TSA/SYS /global /hdb /backint /log_backup_0_0_0_0
Jusr/sap/TSA /SYS /qlobal /hdb /backint /log_backup_1_0_463168_464128

Jusr/sap/TSA/SYS /qlobal /hdb /backint /log_backup_0_0_0_0
Jusr/sap/TSA/SYS/qlobal /hdb /backint /log_backup_2_0_888704_997952 -

| Download List

610

| <Back || Net> || Fnish || Caoncel |

FIG. 6

U.S. Patent Aug. 18, 2015 Sheet 7 of 11 US 9,110,601 B2

200 N
Backup Id Host ID Service Name Location Size | Delete
A o~
A st
A o~
B i
B ——
B i
C o~
C ~——r—
C o~
= B rererere Y
700

FIG. 7

810—

U.S. Patent Aug. 18, 2015 Sheet 8 of 11 US 9,110,601 B2
FSOO
L& Backup Deletion of System TSA (=[O x]
Specify Backup Deletion Settings
Delete the data backup from the catalog onl{),
or from the catalog and physically from the backup location.
® Catalog
H~O|Catalog and Backup Location|
820
I
| <Back || Net> || Fnish || Caoncel |

FIG. 8

U.S. Patent Aug. 18, 2015 Sheet 9 of 11 US 9,110,601 B2

FQOO
L& Backup Deletion of System TSA [=][O x|

Review Backup Deletion Settings

Review the deletion settings and choose ‘Finish' to start the deletion. You can
modify the deletion settings by using the Back button.

Data backup will be deleted from the backup catalog, the backint and the file system.
Total Size 369,33 MB
The following data backup will be deleted:

Jusr/sap /TSA/HDB66 /backup/data/2013—04—24_databackup_4_1
Jusr/sap/TSA/HDB66 /backup/data/2013—04—24_databackup_3_1
1
_1
1

_4
_3
Jusr/sap/TSA/HDB66 /backup/data/2013—04—24_databackup_1_
Jusr/sap/TSA/HDB66 /backup/data/2013—04-24_databackup_0

Jusr/sap/TSA/HDB66 /backup/data/2013—04-24_databackup_2

910

| <Back || Net> || Fnish || Caoncel |

FIG. 9

U.S. Patent

1000\

Mark Queue
Entry Done

Backup File At Specified

Aug. 18, 2015 Sheet 10 of 11

SO \dentify Backup File In).
Backup Delete Queue)‘

51020

File
System

File
System Or Third
Party Tool?

US 9,110,601 B2

r—S1070

[

Query Tool With
Backup ID

)

Does
Backup File Data
Match Queue
Info?

Delete
Backup File

?

Backup File
Available

No

FIG. 10

B2
U.S. Patent Aug. 18, 2015 Sheet 11 of 11 US 9,110,601

|
| |
I |
| . Output |
| Input) Communication Device Device(s) :
| Device(s 1150 '
| 1140 12 — |
| 1 :
|
I |
|) !
I r |
: i
: Processor |
I |
: 1110 :
: B |
|
| Memory :
: 1160 :
I |
I T |
— v
| — — |
: 1130 :
i \ Database Engine ... |
— |
| |
I |
: (Data u} :
I |
I |
/
| ~— 1100 |
I |
|
|

—__———

US 9,110,601 B2

1
BACKUP LIFECYCLE MANAGEMENT

BACKGROUND

Modern database systems provide processes for generating
database backup files and for using such backup files to
recover from database crashes. Some systems utilize a
backup catalog to specify information regarding previously-
generated backup files, such as ID, host, service, location,
size, etc. The backup catalog itself may be stored in the data
area of a database and may therefore be backed-up during
each data backup. Both the backup catalog and its corre-
sponding backup files may become large and cumbersome
over time, and systems are desired to efficiently manage these
entities.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system according to some
embodiments.

FIG. 2 is a tabular representation of a backup catalog
according to some embodiments.

FIG. 3 is a flow diagram of a process according to some
embodiments.

FIG. 4 is an outward view of a user interface for managing
backups according to some embodiments.

FIG. 5 is an outward view of a user interface dialog box
according to some embodiments.

FIG. 6 is an outward view of a user interface dialog box
according to some embodiments.

FIG. 7 is a tabular representation of a backup catalog
according to some embodiments.

FIG. 8 is an outward view of a user interface dialog box
according to some embodiments.

FIG. 9 is an outward view of a user interface dialog box
according to some embodiments.

FIG. 10 is a flow diagram of a process according to some
embodiments.

FIG. 11 is a block diagram of a system according to some
embodiments.

DETAILED DESCRIPTION

The following description is provided to enable any person
in the art to make and use the described embodiments and sets
forth the best mode contemplated for carrying out some
embodiments. Various modifications, however, will remain
readily apparent to those in the art.

FIG. 1 is a block diagram of system 100 according to some
embodiments. System 100 includes database 110, adminis-
trator 130 and client 140. System 100 may also include one or
both of backup files 150 and backup tool 160. Backup files
150 and backup tool 160 may each store data backups and/or
log backups, with backup files 150 being located in a
namespace of application server 120 and backup tool 160
being an external backup tool.

Database 110 may comprise any query-responsive data
source or sources that are or become known, including but not
limited to a structured-query language (SQL) relational data-
base management system. Database 110 may comprise a
relational database, a multi-dimensional database, an eXtend-
able Markup Language (XML) document, or any other data
storage system storing structured and/or unstructured data.
The data of database 110 may be distributed among several
relational databases, multi-dimensional databases, and/or
other data sources. Embodiments are not limited to any num-
ber or types of data sources. For example, database 110 may

10

15

20

25

30

35

40

45

50

55

60

2

comprise one or more OnLine Analytical Processing (OLAP)
databases (i.e., cubes), spreadsheets, text documents, presen-
tations, etc.

Database 110 may implement an “in-memory” database, in
which volatile (e.g., non-disk-based) storage 112 (e.g., Ran-
dom Access Memory) is used both for cache memory and for
storing the full database during operation, and persistent stor-
age (e.g., one or more fixed disks) is used for offline persis-
tency and maintenance of database snapshots. Alternatively,
volatile storage 112 may be used as cache memory for storing
recently-used data, while persistent storage 114 stores the full
database. In some embodiments, the data of database 110
comprises one or more of conventional tabular data, row-
based data stored in row format, column-based data stored in
columnar format, and object-based data. Database 110 may
also or alternatively support multi-tenancy by providing mul-
tiple logical database systems which are programmatically
isolated from one another. Moreover, the data of database 110
may be indexed and/or selectively replicated in an index to
allow fast searching and retrieval thereof.

Database 110 may store metadata describing regarding the
structure, relationships and meaning of the data stored within
database 110. This information may be generated by a data-
base administrator operating administrator 120, and may
include data defining the schema of database tables stored
within database 110. A database table schema may specify the
name of the database table, columns of the database table, the
data type associated with each column, and other information
associated with the database table.

Database engine 120 manages volatile storage 112 and
persistent storage 114, and provides data of database 110 to
database clients, such as client 140, in response to requests
received therefrom.

Administrator 130 provides for management of database
110. For example, administrator 130 may define the structure
of tables within database 110, may configure hosts within
database 110, may schedule backup operations performed by
database engine 120, and may control database engine 120 to
execute post-crash recovery of database 110 based on data
backups and, if desired, log backups.

Each of administrator 130 and client 140 may comprise
one or more devices executing program code of a software
application for presenting user interfaces to allow interaction
with database engine 120. Presentation of a user interface
may comprise any degree or type of rendering, depending on
the type of user interface code generated by database engine
120. For example, administrator 130 may execute a Web
Browser to receive a Web page (e.g., in HTML format) from
database engine 120, and may render and present the Web
page according to known protocols. Either administrator 130
or client 140 may also or alternatively present user interfaces
by executing a standalone executable file (e.g., an .exe file) or
code (e.g., a JAVA applet) within a virtual machine.

FIG. 2 is a tabular representation of a portion of backup
catalog 200 according to some embodiments. As described
above, backup catalog 200 may describe backup files which
were previously generated by system 100. Backup catalog
200 may comprise a data file stored within database 110, and
may be accessed by administrator 130 via an interface pro-
vided by application server 120. Embodiments are not limited
to the structure and contents of backup catalog 200 as shown
in FIG. 2.

Each row of backup catalog 200 corresponds to a single
backup file. According to the example of FIG. 2, backup
catalog includes columns identifying the backup job which
created the backup file (i.e., Backup Id), the host of database
110 which corresponds to the backup file (i.e., Host 1d), the

US 9,110,601 B2

3

Service of the host to which the backup file corresponds, a
Name of the backup file, a Location of the backup file, and a
delete flag. Each host of database 110 may execute one or
more services according to some embodiments, and one data
backup file is generated for each service during each data
backup job of database 110. Accordingly, several backup files
may share the same Backup Id. In the illustrated embodiment,
the Location associated with a backup file in backup catalog
200 may be a local path of backup files 150 or an indicator of
third-party backup tool 160. Deletion of a backup file will be
described in further detail below.

FIG. 3 comprises a flow diagram of process 300 according
to some embodiments. In some embodiments, various hard-
ware elements of database 110 execute program code of data-
base engine 120 to perform process 300. Process 300 and all
other processes mentioned herein may be embodied in pro-
cessor-executable program code read from one or more of
non-transitory computer-readable media, such as a floppy
disk, aCD-ROM, a DVD-ROM, a Flash drive, and a magnetic
tape, and then stored in a compressed, uncompiled and/or
encrypted format. In some embodiments, hard-wired cir-
cuitry may be used in place of, or in combination with, pro-
gram code for implementation of processes according to
some embodiments. Embodiments are therefore not limited
to any specific combination of hardware and software.

Initially, an instruction to delete a backup file is received at
S310. In one example of S310, administrator 130 first invokes
a user interface for managing backup operations. As
described above, such a user interface may be generated and
displayed by an application executing on administrator 130,
may comprise a Web page or other interface provided to
administrator 130 by database engine 120 and displayed
thereby, or may be displayed by any other means.

FIG. 4 is an outward view of user interface 400 according
to some embodiments. Embodiments may utilize any other
user interface or system for receiving the instruction at S310.
User interface 400 displays information stored in the backup
catalog. For example, list 410 includes one row for each
backup job represented in the backup catalog. These backup
jobs may consist of log backups or data backups. Area 420
shows detailed information associated with a backup job
which is selected in area 410. Database engine 120 may read
this information from the backup catalog described herein.

Table 430 of area 420 indicates the various backup files
which were created during the selected backup job. In the
illustrated example, the selected backup job created five data
backup files. Specifically, one data backup file was created for
each service of the database, and another data backup file was
created to back up the database topology.

As shown in FIG. 4, an administrator has selected a data
backup file from list 410. Such a selection may comprise a
“right-click” resulting in display of context menu 430. For
purposes of the present example, it will be assumed that the
administrator selects “Delete Data Backup . . . ” from context
menu 430. In response, dialog box 500 of FI1G. 5 is displayed.

Dialog box 500 allows the administrator to specify whether
the backup files associated with the selected backup job
should only be deleted from the backup catalog or from both
the backup catalog and from physical storage. Continuing
with the example, the administrator selects radio button 510
to specify that the backup files associated with the selected
backup job should only be deleted from the backup catalog,
and then selects Next button 510.

Dialog box 600 of FIG. 6 is displayed in response to selec-
tion of Next button 510. Dialog box 600 displays the backup
files which will be deleted (i.e., from the backup catalog only)
upon selection of Finish button 610. These files include the

20

25

40

45

4

data backup files shown in table 430 as well as log backup
files which correspond to those data backup files. Generally,
these log backup files correspond to logs which were created
after the data backup files but before the next subsequent data
backup job. In other words, the log backup files to be deleted
are those which describe changes to the database which
occurred after the selected backup job but before a next
backup job.

The instruction to delete a backup job is received at S310 in
response to selection of Finish button 610. Database engine
120 therefore locks the backup catalog at S320 to prevent any
changes thereto, and then determines whether the instruction
comprises an instruction to delete one backup job or to delete
multiple backup jobs. Continuing the present example, flow
proceeds from S330 to S350 because only one backup job was
selected in area 410.

A record associated with the backup job to be deleted is
added to the backup catalog at S350. FIG. 7 illustrates backup
catalog 200 after addition of record 700 according to some
embodiments of S350. Record 700 is associated with the
backup job having Backup Id “B” and includes a Delete flag
“Y”. Record 700 indicates that an instruction to delete the
backup job having Backup 1d “B”’ has been received. Embodi-
ments are not limited to the use of a Delete flag; this indication
may be signified in any manner according to some embodi-
ments.

Record 700 may be used to determine the backup jobs to
display in area 410 of user interface 400. For example, upon
receipt of an instruction to view the contents of or otherwise
access backup catalog 200, database engine 120 parses
backup catalog 200 to determine the backup jobs represented
therein, and presents the determined backup jobs. This deter-
mination omits any backup jobs which are associated with a
delete flag. Therefore, if database engine 120 locates a record
of'backup catalog 200 (e.g., record 700) which indicates that
an instruction has been received to delete a particular backup
job (e.g., Backup Id B), database engine 120 does not display
the particular backup job in area 410, despite any other
records which might be associated with this backup job in
backup catalog 200.

According to some embodiments, backup catalog 200 is
saved in database 110 as a linked list. Consequently, it may be
advantageous to add a record to the linked list as described
with respect to S350 instead of attempting to delete all records
associated with the selected backup job and to correspond-
ingly reconfigure the linkages of the linked list.

Returning to process 300, it is determined at S370 whether
an instruction was received to delete the physical backup files
associated with the selected backup job. In the present
example, it was specified in user interface 500 to delete the
backup job only from the backup catalog. Flow therefore
proceeds to S380 to release the lock which was placed at
S320.

It will now be assumed that an instruction was received at
S310 to delete more than one backup job. For example, the
administrator may have selected “Delete Older Backups”
from context menu 430 of interface 400. In response, dialog
box 800 is displayed to allow the administrator to specify
whether the backup files associated with the selected backup
job should only be deleted from the backup catalog or from
both the backup catalog and from physical storage. As shown,
the administrator has selected radio button 810 to specify that
the backup files associated with the selected backup job
should be deleted from the backup catalog and from their
physical backup locations.

Dialog box 900 of FIG. 9 is displayed after selection of
Next button 820. Dialog box 900 displays the backup files

US 9,110,601 B2

5

which will be deleted (i.e., from the backup catalog and from
their respective storage locations) after selection of Finish
button 910.

Accordingly, the instruction to delete a backup job is
received at S310 in response to selection of Finish button 910.
Database engine 120 then locks the backup catalog at S320,
and determines at S330 that the instruction comprises an
instruction to delete multiple backup jobs. Flow therefore
proceeds to S340.

At S340, database engine 120 identifies backup files from
the backup catalog which are not to be deleted. According to
some embodiments, the identified backup files are those
which are not associated with a Backup Id of a backup job for
which an instruction to delete was received at S310. For
example, if a backup job is selected in area 410 of interface
400 and the “Delete Older Backups™ operation is selected,
S340 may comprise identifying backup files of the selected
backup job as well as backup files of all backup jobs which
were executed more recently than the selected job. Next, at
S360, a new backup catalog is created including records
corresponding to the backup files which were identified at
S340. Database engine 120 may also update backup catalog
metadata to point to the new backup catalog.

A new backup catalog is created at S340 as an alternative to
adding “Delete” records associated with each deleted backup
job as described with respect to S350. This alternative repre-
sents a trade-off between 1) increased size of the backup
catalog and increased time to parse the backup catalog and 2)
time required to create a new backup catalog. According to
some embodiments, the decision at S330 to proceed to S340
or S350 may be based on a threshold number of greater than
one.

Continuing the current example, flow proceeds to S370 and
then to S390. At S380, any backup files to be deleted (i.e., the
backup files of the backup jobs to be deleted) are added to a
backup delete queue. Addition of a backup file to the backup
delete queue may comprise adding a record to the backup
delete queue including a name, location, Backup Id and other
identifying information of the backup file. Flow then contin-
ues to S380 to release the lock which was placed at S320.

In some embodiments, the backup delete queue is pro-
cessed by a thread of database engine 120 in order to delete
physical backup files from their respective locations. The
thread may be executed in parallel with a thread responsible
for execution of process 300 of FIG. 3.

FIG. 10 illustrates process 1000 of FIG. 10 which may be
performed by such a thread according to some embodiments.
Initially, a backup file of the backup delete queue is identified
at S1010. According to some embodiments, the identified
backup file is the least-recently added backup file in the
backup delete queue which has not yet been processed by
process 1000.

At 81020, it is determined whether the backup file is
located in the file system of database engine 120 (e.g. backup
files 150) or in a third party backup tool (e.g., backup tool
160). As described above, the location may be specified in the
corresponding entry of the backup delete queue.

Flow proceeds to S1030 if the backup file is located in the
file system. At S1030, it is determined whether the backup file
is located at the specified path of the file system. If not, the
entry of the backup queue which corresponds to the backup
file is marked “done” at S1060 and flow returns to S1010.

Flow proceeds from S1030 to S1040 if the backup file is
located at the specified path. At S1040, it is determined
whether data of the backup file matches data associated with
the backup file in the backup delete queue. In this regard,
S1040 may comprise reading the header of the backup file to

10

15

20

25

30

35

40

45

50

55

60

6

determine whether a Backup Id, host information, and/or
other data within the backup file matches corresponding data
associated with the backup file in the backup delete queue. If
the data do not match, the entry of the backup queue which
corresponds to the backup file is marked “done” at S1060 and
flow returns to S1010 as described above.

If the data are determined to match at S1040, the backup
file is deleted at S1050 and the corresponding queue entry is
marked “done” at S1060.

Returning to S1020, it may be determined that the identi-
fied backup file is located at (i.e., managed by) a third party
backup tool. In this case, the tool is queried with an external
backup identifier of the backup file at S1070. Based on the
response to the query (e.g., a status of the backup file) it is
determined at S1080 whether the backup file is available in
the third party tool. If so, the backup file is deleted at S1050
(e.g., by instructing the tool to delete the backup file) and the
corresponding entry is marked “done” at S1060. If not, the
entry is simply marked “done” at S1060. Flow returns to
S1010 from S1060 to identify a next backup file in the queue
and to continue as described above.

FIG. 11 is a block diagram of system 1100 according to
some embodiments. System 1100 may comprise a general-
purpose computing system and may execute program code to
perform any of the processes described herein. System 1100
may comprise an implementation of database 110 according
to some embodiments. System 1100 may include other
unshown elements according to some embodiments.

System 1100 includes processor 1110 operatively coupled
to communication device 1120, data storage device 1130, one
or more input devices 1140, one or more output devices 1150
and memory 1160. Communication device 1120 may facili-
tate communication with external devices, such as a reporting
client, or a data storage device. Input device(s) 1140 may
comprise, for example, a keyboard, a keypad, a mouse or
other pointing device, a microphone, knob or a switch, an
infra-red (IR) port, a docking station, and/or a touch screen.
Input device(s) 1140 may be used, for example, to enter
information into apparatus 1100. Output device(s) 1150 may
comprise, for example, a display (e.g., a display screen) a
speaker, and/or a printer.

Data storage device 1130 may comprise any appropriate
persistent storage device, including combinations of mag-
netic storage devices (e.g., magnetic tape, hard disk drives
and flash memory), optical storage devices, Read Only
Memory (ROM) devices, etc., while memory 1160 may com-
prise Random Access Memory (RAM).

Database engine 1132 may comprise program code
executed by processor 1110 to cause apparatus 1100 to per-
form any one or more of the processes described herein.
Embodiments are not limited to execution of these processes
by a single apparatus. Data 1134 may include the data of
database 110 as described above. As also described above,
database 110 may be implemented using volatile memory
such as memory 1160. Data storage device 1130 may also
store data and other program code for providing additional
functionality and/or which are necessary for operation of
system 1100, such as device drivers, operating system files,
etc.

The foregoing diagrams represent logical architectures for
describing processes according to some embodiments, and
actual implementations may include more or different com-
ponents arranged in other manners. Other topologies may be
used in conjunction with other embodiments. Moreover, each
system described herein may be implemented by any number
of devices in communication via any number of other public
and/or private networks. Two or more of such computing

US 9,110,601 B2

7

devices may be located remote from one another and may
communicate with one another via any known manner of
network(s) and/or a dedicated connection. Each device may
comprise any number of hardware and/or software elements
suitable to provide the functions described herein as well as
any other functions. For example, any computing device used
in an implementation of system 100 may include a processor
to execute program code such that the computing device
operates as described herein.

All systems and processes discussed herein may be embod-
ied in program code stored on one or more non-transitory
computer-readable media. Such media may include, for
example, a floppy disk, a CD-ROM, a DVD-ROM, a Flash
drive, magnetic tape, and solid state Random Access Memory
(RAM) or Read Only Memory (ROM) storage units. Embodi-
ments are therefore not limited to any specific combination of
hardware and software.

Embodiments described herein are solely for the purpose
of illustration. Those skilled in the art will recognize other
embodiments may be practiced with modifications and alter-
ations to that described above.

What is claimed is:

1. A computing system comprising:

amemory storing processor-executable program code; and

a processor to execute the processor-executable program

code in order to cause the computing system to:

determine a plurality of backup jobs based on a backup
catalog, the backup catalog comprising a plurality of
records, each of the plurality of records associated
with one of the plurality of backup jobs;

receive a first instruction to delete a first backup job of
the plurality of backup jobs; and

in response to the first instruction, add a delete record
associated with the first backup job to the backup
catalog,

wherein the delete record indicates that the first instruc-
tion to delete the first backup job was received.

2. A computing system according to claim 1, wherein the
processor is further to execute the processor-executable pro-
gram code in order to cause the computing system to:

receive an instruction to access the backup catalog;

in response to the instruction, determine a second plurality

of backup jobs based on the backup catalog, the second
plurality of backup jobs not including the first backup
job; and

present the second plurality of backup jobs.

3. A computing system according to claim 1, wherein the
processor is further to execute the processor-executable pro-
gram code in order to cause the computing system to:

determine whether the first instruction comprises an

instruction to delete one or more physical backup files
associated with the first backup job; and

if it is determined that the first instruction comprises an

instruction to delete one or more physical backup files
associated with the first backup job, delete the one or
more physical backup files.

4. A computing system according to claim 3, wherein the
processor is further to execute the processor-executable pro-
gram code in order to cause the computing system to:

receive a second instruction to delete two or more of the

plurality of backup jobs; and

in response to the second instruction:

identify records of the backup catalog which are not
associated with the two or more backup jobs; and

create a second backup catalog including the identified
records.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

5. A computing system according to claim 4, wherein the
processor is further to execute the processor-executable pro-
gram code in order to cause the computing system to:

determine whether the second instruction comprises an

instruction to delete one or more physical backup files
associated with the second backup job and one or more
physical backup files associated with the third backup
job; and

if it is determined that the second instruction comprises an

instruction to delete one or more physical backup files
associated with the second backup job and the one or
more physical backup files associated with the third
backup job, delete the one or more physical backup files
associated with the second backup job and the one or
more physical backup files associated with the third
backup job.

6. A computing system according to claim 1, wherein the
processor is further to execute the processor-executable pro-
gram code in order to cause the computing system to:

receive a second instruction to delete two or more of the

plurality of backup jobs; and

in response to the second instruction:

identify records of the backup catalog which are not
associated with the two or more backup jobs; and

create a second backup catalog including the identified
records.

7. A non-transitory computer-readable medium storing
program code, the program code executable by a processor of
a computing system to cause the computing system to:

determine a plurality of backup jobs based on a backup

catalog, the backup catalog comprising a plurality of
records, each of the plurality of records associated with
one of the plurality of backup jobs;

receive a first instruction to delete a first backup job of the

plurality of backup jobs; and

in response to the first instruction, add a delete record

associated with the first backup job to the backup cata-
log,

wherein the delete record indicates that the first instruction

to delete the first backup job was received.

8. A non-transitory computer-readable medium according
to claim 7, wherein the program code is further executable in
order to cause the computing device to:

receive an instruction to access the backup catalog;

in response to the instruction, determine a second plurality

of backup jobs based on the backup catalog, the second
plurality of backup jobs not including the first backup
job; and

present the second plurality of backup jobs.

9. A non-transitory computer-readable medium according
to claim 7, wherein the program code is further executable in
order to cause the computing device to:

determine whether the first instruction comprises an

instruction to delete one or more physical backup files
associated with the first backup job; and

if it is determined that the first instruction comprises an

instruction to delete one or more physical backup files
associated with the first backup job, delete the one or
more physical backup files.

10. A non-transitory computer-readable medium accord-
ing to claim 9, wherein the program code is further executable
in order to cause the computing device to:

receive a second instruction to delete two or more of the

plurality of backup jobs; and

in response to the second instruction:

identify records of the backup catalog which are not
associated with the two or more backup jobs; and

US 9,110,601 B2

9

create a second backup catalog including the identified
records.

11. A non-transitory computer-readable medium accord-
ing to claim 10, wherein the program code is further execut-
able in order to cause the computing device to:

determine whether the second instruction comprises an

instruction to delete one or more physical backup files
associated with the second backup job and one or more
physical backup files associated with the third backup
job; and

if it is determined that the second instruction comprises an

instruction to delete one or more physical backup files
associated with the second backup job and the one or
more physical backup files associated with the third
backup job, delete the one or more physical backup files
associated with the second backup job and the one or
more physical backup files associated with the third
backup job.

12. A non-transitory computer-readable medium accord-
ing to claim 7, wherein the program code is further executable
in order to cause the computing device to:

receive a second instruction to delete two or more of the

plurality of backup jobs; and

in response to the second instruction:

identify records of the backup catalog which are not
associated with the two or more backup jobs; and

create a second backup catalog including the identified
records.

13. A computer-implemented method comprising:

determining a plurality of backup jobs based on a backup

catalog, the backup catalog comprising a plurality of
records, each of the plurality of records associated with
one of the plurality of backup jobs;

receiving a first instruction to delete a first backup job of

the plurality of backup jobs; and

in response to the first instruction, adding a delete record

associated with the first backup job to the backup cata-
log,

wherein the delete record indicates that the first instruction

to delete the first backup job was received.

14. A computer-implemented method according to claim
13, further comprising:

receiving an instruction to access the backup catalog;

in response to the instruction, determining a second plural-

ity of backup jobs based on the backup catalog, the

5

25

30

35

40

10
second plurality of backup jobs not including the first
backup job; and
presenting the second plurality of backup jobs.
15. A computer-implemented method according to claim
13, further comprising:
determining whether the first instruction comprises an
instruction to delete one or more physical backup files
associated with the first backup job; and
if it is determined that the first instruction comprises an
instruction to delete one or more physical backup files
associated with the first backup job, deleting the one or
more physical backup files.
16. A computer-implemented method according to claim
15, further comprising:
receiving a second instruction to delete two or more of the
plurality of backup jobs; and
in response to the second instruction:
identifying records of the backup catalog which are not
associated with the two or more backup jobs; and
creating a second backup catalog including the identi-
fied records.
17. A computer-implemented method according to claim
16, further comprising:
determining whether the second instruction comprises an
instruction to delete one or more physical backup files
associated with the second backup job and one or more
physical backup files associated with the third backup
job; and
if it is determined that the second instruction comprises an
instruction to delete one or more physical backup files
associated with the second backup job and the one or
more physical backup files associated with the third
backup job, deleting the one or more physical backup
files associated with the second backup job and the one
or more physical backup files associated with the third
backup job.
18. A computer-implemented method according to claim
13, further comprising:
receiving a second instruction to delete two or more of the
plurality of backup jobs; and
in response to the second instruction:
identifying records of the backup catalog which are not
associated with the two or more backup jobs; and
creating a second backup catalog including the identi-
fied records.

